Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 434
1.
J Thromb Haemost ; 22(5): 1433-1446, 2024 May.
Article En | MEDLINE | ID: mdl-38331196

BACKGROUND: Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES: To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS: The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS: We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION: This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.


Alloys , Antibodies, Monoclonal , Factor XII , Factor XI , Stents , Thrombosis , Animals , Thrombosis/prevention & control , Thrombosis/blood , Factor XII/metabolism , Factor XII/antagonists & inhibitors , Factor XII/immunology , Factor XI/antagonists & inhibitors , Factor XI/immunology , Factor XI/metabolism , Antibodies, Monoclonal/pharmacology , Humans , Blood Coagulation/drug effects , Disease Models, Animal , Male , Regional Blood Flow , Fibrinolytic Agents/pharmacology
2.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(1): 16-22, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38404266

Anticoagulation therapy stands as a key treatment for thrombotic diseases. The consequential bleeding risk tied to existing anticoagulation methods significantly impacts patient prognosis. In the intensive care unit (ICU), patients often necessitate organ support, leading to the inevitable placement of artificial devices in blood vessels, thereby requiring anticoagulation treatment to avert clot formation that might impede organ support. Nevertheless, these patients commonly encounter a heightened risk of bleeding. Hemophilia B, identified in 1953, manifests as a deficiency in coagulation factor XI (FXI), which focused people's perspective on the endogenous coagulation pathway, that is, the contact pathway. Upon interaction between the surface of artificial devices and FXII, FXII activates, subsequently triggering FXI and initiating the "coagulation cascade" within the contact pathway. Inhibitors targeting the contact pathway encompass two primary categories: FXII inhibitors and FXI inhibitors, capable of impeding this process. This article reviews the role of FXII and FXI in activating the contact pathway, seeking to illuminate their contributions to thrombus formation. By listing the relatively mature drugs and their indications, clinicians are familiar with this new anticoagulant.


Factor XII , Thrombosis , Humans , Factor XII/metabolism , Factor XII/pharmacology , Blood Coagulation , Factor XI/metabolism , Factor XI/pharmacology , Thrombosis/drug therapy , Anticoagulants/therapeutic use
3.
J Thromb Haemost ; 22(5): 1336-1346, 2024 May.
Article En | MEDLINE | ID: mdl-38242207

BACKGROUND: Factor (F)XI can be activated by proteases, including thrombin and FXIIa. The interactions of these enzymes with FXI are transient in nature and therefore difficult to study. OBJECTIVES: To identify the binding interface between thrombin and FXI and understand the dynamics underlying FXI activation. METHODS: Crosslinking mass spectrometry was used to localize the binding interface of thrombin on FXI. Molecular dynamics simulations were applied to investigate conformational changes enabling thrombin-mediated FXI activation after binding. The proposed trajectory of activation was examined with nanobody 1C10, which was previously shown to inhibit thrombin-mediated activation of FXI. RESULTS: We identified a binding interface of thrombin located on the light chain of FXI involving residue Pro520. After this initial interaction, FXI undergoes conformational changes driven by binding of thrombin to the apple 1 domain in a secondary step to allow migration toward the FXI cleavage site. The 1C10 binding site on the apple 1 domain supports this proposed trajectory of thrombin. We validated the results with known mutation sites on FXI. As Pro520 is conserved in prekallikrein (PK), we hypothesized and showed that thrombin can bind PK, even though it cannot activate PK. CONCLUSION: Our investigations show that the activation of FXI is a multistaged procedure. Thrombin first binds to Pro520 in FXI; thereafter, it migrates toward the activation site by engaging the apple 1 domain. This detailed analysis of the interaction between thrombin and FXI paves a way for future interventions for bleeding or thrombosis.


Factor XI , Molecular Dynamics Simulation , Protein Binding , Thrombin , Thrombin/metabolism , Thrombin/chemistry , Humans , Factor XI/metabolism , Factor XI/chemistry , Binding Sites , Protein Multimerization , Mutation , Protein Conformation , Blood Coagulation , Prekallikrein/metabolism , Prekallikrein/chemistry , Protein Subunits/metabolism , Enzyme Activation , Factor XIa/metabolism , Factor XIa/chemistry
4.
J Thromb Haemost ; 22(1): 199-212, 2024 Jan.
Article En | MEDLINE | ID: mdl-37751848

BACKGROUND: Cancer-associated thrombosis is a frequent complication in patients with malignancies. While factor XI (FXI)/FXIa inhibition is efficacious in preventing postoperative venous thromboembolism, its role in tumor cell-induced coagulation is less defined. OBJECTIVES: We thus aimed to provide mechanistic insights into FXI/FXIa inhibition in tumor cell-induced coagulation activation. METHODS: Procoagulant activity (PCA) of 4 different tissue factor (TF) expressing tumor cell lines was analyzed by single-stage clotting and thrombin generation assay in the presence of a FXIa inhibitor, BMS-262084 (BMS), an inhibitory FXI antibody (anti-FXI), or peak and trough concentrations of rivaroxaban or tinzaparin. Further, tumor cell-induced platelet aggregation was recorded. Recombinant human TF served as positive control. RESULTS: Although BMS and anti-FXI potently inhibited FXIa amidolytic activity, both inhibitors efficiently mitigated recombinant human TF- and tumor cell-induced fibrin clot formation and platelet aggregation only in the presence of low TF PCA. The anticoagulant effects showed an inverse correlation with the magnitude of cellular TF PCA expression. Similarly, BMS markedly interfered with tumor cell-induced thrombin generation, with the most prominent effects on peak and total thrombin. In addition, anticoagulant effects of FXIa inhibition by 10 µM BMS were in a similar range to those obtained by 600 nM rivaroxaban and 1.6 µM tinzaparin at low TF PCA levels. However, rivaroxaban and tinzaparin also exerted marked anticoagulant activity at high TF PCA levels. CONCLUSION: Our findings indicate that FXI/FXIa inhibition interferes with tumor cell-induced coagulation activation only at low TF PCA expression levels, a finding with potential implications for future in vivo studies.


Factor XI , Neoplasms , Humans , Factor XI/metabolism , Rivaroxaban , Tinzaparin , Thrombin/metabolism , Thromboplastin/metabolism , Anticoagulants/pharmacology , Neoplasms/drug therapy , Factor XIa/metabolism
5.
Arterioscler Thromb Vasc Biol ; 44(1): 290-299, 2024 01.
Article En | MEDLINE | ID: mdl-37970718

BACKGROUND: Despite the ubiquitous utilization of central venous catheters in clinical practice, their use commonly provokes thromboembolism. No prophylactic strategy has shown sufficient efficacy to justify routine use. Coagulation factors FXI (factor XI) and FXII (factor XII) represent novel targets for device-associated thrombosis, which may mitigate bleeding risk. Our objective was to evaluate the safety and efficacy of an anti-FXI mAb (monoclonal antibody), gruticibart (AB023), in a prospective, single-arm study of patients with cancer receiving central line placement. METHODS: We enrolled ambulatory cancer patients undergoing central line placement to receive a single dose of gruticibart (2 mg/kg) administered through the venous catheter within 24 hours of placement and a follow-up surveillance ultrasound at day 14 for evaluation of catheter thrombosis. A parallel, noninterventional study was used as a comparator. RESULTS: In total, 22 subjects (n=11 per study) were enrolled. The overall incidence of catheter-associated thrombosis was 12.5% in the interventional study and 40.0% in the control study. The anti-FXI mAb, gruticibart, significantly prolonged the activated partial thromboplastin time in all subjects on day 14 compared with baseline (P<0.001). Gruticibart was well tolerated and without infusion reactions, drug-related adverse events, or clinically relevant bleeding. Platelet flow cytometry demonstrated no difference in platelet activation following administration of gruticibart. T (thrombin)-AT (antithrombin) and activated FXI-AT complexes increased following central line placement in the control study, which was not demonstrated in our intervention study. CRP (C-reactive protein) did not significantly increase on day 14 in those who received gruticibart, but it did significantly increase in the noninterventional study. CONCLUSIONS: FXI inhibition with gruticibart was well tolerated without any significant adverse or bleeding-related events and resulted in a lower incidence of catheter-associated thrombosis on surveillance ultrasound compared with the published literature and our internal control study. These findings suggest that targeting FXI could represent a safe intervention to prevent catheter thrombosis. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04465760.


Neoplasms , Thrombosis , Humans , Factor XI/metabolism , Prospective Studies , Thrombosis/etiology , Thrombosis/prevention & control , Thrombosis/drug therapy , Hemorrhage/chemically induced , Catheters/adverse effects , Neoplasms/drug therapy , Neoplasms/complications
6.
J Thromb Haemost ; 22(1): 225-237, 2024 Jan.
Article En | MEDLINE | ID: mdl-37813198

BACKGROUND: In plasma, high molecular weight kininogen (HK) is either free or bound to prekallikrein (PK) or factor (F) XI (FXI). During contact activation, HK is thought to anchor PK and FXI to surfaces, facilitating their conversion to the proteases plasma kallikrein and FXIa. Mice lacking HK have normal hemostasis but are resistant to injury-induced arterial thrombosis. OBJECTIVES: To identify amino acids on the HK-D6 domain involved in PK and FXI binding and study the importance of the HK-PK and HK-FXI interactions to coagulation. METHODS: Twenty-four HK variants with alanine replacements spanning residues 542-613 were tested in PK/FXI binding and activated partial thromboplastin time clotting assays. Surface-induced FXI and PK activation in plasma were studied in the presence or absence of HK. Kng1-/- mice lacking HK were supplemented with human or murine HK and tested in an arterial thrombosis model. RESULTS: Overlapping binding sites for PK and FXI were identified in the HK-D6 domain. HK variants with defects only in FXI binding corrected the activated partial thromboplastin time of HK-deficient plasma poorly compared to a variant defective only in PK-binding. In plasma, HK deficiency appeared to have a greater deleterious effect on FXI activation than PK activation. Human HK corrected the defect in arterial thrombus formation in HK-deficient mice poorly due to a specific defect in binding to mouse FXI. CONCLUSION: Clinical observations indicate FXI is required for hemostasis, while HK is not. Yet, the HK-FXI interaction is required for contact activation-induced clotting in vitro and in vivo suggesting an important role in thrombosis and perhaps other FXI-related activities.


Kininogen, High-Molecular-Weight , Thrombosis , Animals , Humans , Mice , Kininogen, High-Molecular-Weight/metabolism , Factor XI/metabolism , Prekallikrein/metabolism , Blood Coagulation
8.
Cardiovasc Diabetol ; 22(1): 182, 2023 07 17.
Article En | MEDLINE | ID: mdl-37460982

BACKGROUND: Type 2 diabetes mellitus (T2DM) patients are at high risk of cardiovascular (CV) events. Factor XI (FXI) is associated with arterial thromboembolism, including myocardial infarction (MI), stroke, and CV mortality. The role of FXI in T2DM is unknown. We investigated whether plasma FXI is associated with CV events in T2DM patients in long-term observation. METHODS: In 133 T2DM patients (aged 66 ± 8 years, 40.6% women, median T2DM duration 5 [2-10] years) we assessed plasma FXI levels, along with fibrin clot properties, thrombin generation, and fibrinolysis proteins. A composite endpoint of MI, stroke, or CV death, as well as CV mortality alone were assessed during a median follow-up of 72 months. RESULTS: Plasma FXI above the 120% upper normal limit was detected in 25 (18.8%) patients and showed positive association with LDL cholesterol and thrombin activatable fibrinolysis inhibitor, but not glycated hemoglobin, inflammatory markers or thrombin generation. The composite endpoint (n = 21, 15.8%) and CV death alone (n = 16, 12%) were more common in patients with elevated FXI (hazard ratio [HR] 10.94, 95% confidence interval [CI] 4.46-26.87, p < 0.001 and HR 7.11, 95% CI 2.61-19.31, p < 0.001, respectively). On multivariable analysis, FXI remained an independent predictor of the composite endpoint and CV death, regardless of concomitant coronary artery disease. CONCLUSIONS: To our knowledge, this study is the first to show that in T2DM patients, elevated FXI could predict major CV events, including mortality, which suggest that anti-FXI agents might be a potential novel antithrombotic option in this disease.


Diabetes Mellitus, Type 2 , Myocardial Infarction , Stroke , Thrombosis , Humans , Female , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Factor XI/metabolism , Thrombin , Risk Factors , Myocardial Infarction/diagnosis , Myocardial Infarction/complications
9.
Metab Brain Dis ; 38(7): 2383-2391, 2023 10.
Article En | MEDLINE | ID: mdl-37341855

Multiple sclerosis (MS) is the most common causes of non-traumatic disability in young adults worldwide. MS pathophysiologies include the formation of inflammatory lesions, axonal damage and demyelination, and blood brain barrier (BBB) disruption. Coagulation proteins, including factor (F)XII, can serve as important mediators of the adaptive immune response during neuroinflammation. Indeed, plasma FXII levels are increased during relapse in relapsing-remitting MS patients, and previous studies showed that reducing FXII levels was protective in a murine model of MS, experimental autoimmune encephalomyelitis (EAE). Our objective was to determine if pharmacological targeting of FXI, a major substrate of activated FXII (FXIIa), improves neurological function and attenuates CNS damage in the setting of EAE. EAE was induced in male mice using murine myelin oligodendrocyte glycoprotein peptides combined with heat-inactivated Mycobacterium tuberculosis and pertussis toxin. Upon onset of symptoms, mice were treated every other day intravenously with anti-FXI antibody, 14E11, or saline. Disease scores were recorded daily until euthanasia for ex vivo analyses of inflammation. Compared to the vehicle control, 14E11 treatment reduced the clinical severity of EAE and total mononuclear cells, including CD11b+CD45high macrophage/microglia and CD4+ T cell numbers in brain. Following pharmacological targeting of FXI, BBB disruption was reduced, as measured by decreased axonal damage and fibrin(ogen) accumulation in the spinal cord. These data demonstrate that pharmacological inhibition of FXI reduces disease severity, immune cell migration, axonal damage, and BBB disruption in mice with EAE. Thus, therapeutic agents targeting FXI and FXII may provide a useful approach for treating autoimmune and neurologic disorders.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Male , Mice , Brain/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Factor XI/antagonists & inhibitors , Factor XI/metabolism , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein , Spinal Cord/metabolism
10.
J Thromb Haemost ; 21(9): 2378-2389, 2023 09.
Article En | MEDLINE | ID: mdl-37068593

BACKGROUND: High-molecular weight kininogen (HK) circulates in plasma as a complex with zymogen prekallikrein (PK). HK is both a substrate and a cofactor for activated plasma kallikrein, and the principal exosite interactions occur between PK N-terminal apple domains and the C-terminal D6 domain of HK. OBJECTIVES: To determine the structure of the complex formed between PK apple domains and an HKD6 fragment and compare this with the coagulation factor XI (FXI)-HK complex. METHODS: We produced recombinant FXI and PK heavy chains (HCs) spanning all 4 apple domains. We cocrystallized PKHC (and subsequently FXIHC) with a 31-amino acid synthetic peptide spanning HK residues Ser565-Lys595 and determined the crystal structure. We also analyzed the full-length FXI-HK complex in solution using hydrogen deuterium exchange mass spectrometry. RESULTS: The 2.3Å PKHC-HK peptide crystal structure revealed that the HKD6 sequence WIPDIQ (Trp569-Gln574) binds to the apple 1 domain and HK FNPISDFPDT (Phe582-Thr591) binds to the apple 2 domain with a flexible intervening sequence resulting in a bent double conformation. A second 3.2Å FXIHC-HK peptide crystal structure revealed a similar interaction with the apple 2 domain but an alternate, straightened conformation of the HK peptide where residues LSFN (Leu579-Asn583) interacts with a unique pocket formed between the apple 2 and 3 domains. HDX-MS of full length FXI-HK complex in solution confirmed interactions with both apple 2 and apple 3. CONCLUSIONS: The alternate conformations and exosite binding of the HKD6 peptide likely reflects the diverging relationship of HK to the functions of PK and FXI.


Factor XI , Kininogen, High-Molecular-Weight , Humans , Kininogen, High-Molecular-Weight/metabolism , Factor XI/metabolism , Prekallikrein/metabolism , Molecular Weight , Binding Sites , Kininogens/chemistry , Peptides/chemistry
11.
J Thromb Haemost ; 21(6): 1567-1579, 2023 06.
Article En | MEDLINE | ID: mdl-36863563

BACKGROUND: During plasma contact activation, factor XII (FXII) binds to surfaces through its heavy chain and undergoes conversion to the protease FXIIa. FXIIa activates prekallikrein and factor XI (FXI). Recently, we showed that the FXII first epidermal growth factor-1 (EGF1) domain is required for normal activity when polyphosphate is used as a surface. OBJECTIVES: The aim of this study was to identify amino acids in the FXII EGF1 domain required for polyphosphate-dependent FXII functions. METHODS: FXII with alanine substitutions for basic residues in the EGF1 domain were expressed in HEK293 fibroblasts. Wild-type FXII (FXII-WT) and FXII containing the EGF1 domain from the related protein Pro-HGFA (FXII-EGF1) were positive and negative controls. Proteins were tested for their capacity to be activated, and to activate prekallikrein and FXI, with or without polyphosphate, and to replace FXII-WT in plasma clotting assays and a mouse thrombosis model. RESULTS: FXII and all FXII variants were activated similarly by kallikrein in the absence of polyphosphate. However, FXII with alanine replacing Lys73, Lys74, and Lys76 (FXII-Ala73,74,76) or Lys76, His78, and Lys81 (FXII-Ala76,78,81) were activated poorly in the presence of polyphosphate. Both have <5% of normal FXII activity in silica-triggered plasma clotting assays and have reduced binding affinity for polyphosphate. Activated FXIIa-Ala73,74,76 displayed profound defects in surface-dependent FXI activation in purified and plasma systems. FXIIa-Ala73,74,76 reconstituted FXII-deficient mice poorly in an arterial thrombosis model. CONCLUSION: FXII Lys73, Lys74, Lys76, and Lys81 form a binding site for polyanionic substances such as polyphosphate that is required for surface-dependent FXII function.


Factor XII , Thrombosis , Humans , Animals , Mice , Factor XII/metabolism , Prekallikrein/metabolism , Polyphosphates , HEK293 Cells , Factor XI/metabolism , Factor XIIa/metabolism
12.
J Med Chem ; 66(6): 3785-3797, 2023 03 23.
Article En | MEDLINE | ID: mdl-36898159

Anticoagulation therapy is a mainstay of the treatment of thrombotic disorders; however, conventional anticoagulants trade antithrombotic benefits for bleeding risk. Factor (f) XI deficiency, known as hemophilia C, rarely causes spontaneous bleeding, suggesting that fXI plays a limited role in hemostasis. In contrast, individuals with congenital fXI deficiency display a reduced incidence of ischemic stroke and venous thromboembolism, indicating that fXI plays a role in thrombosis. For these reasons, there is intense interest in pursuing fXI/factor XIa (fXIa) as targets for achieving antithrombotic benefit with reduced bleeding risk. To obtain selective inhibitors of fXIa, we employed libraries of natural and unnatural amino acids to profile fXIa substrate preferences. We developed chemical tools for investigating fXIa activity, such as substrates, inhibitors, and activity-based probes (ABPs). Finally, we demonstrated that our ABP selectively labels fXIa in the human plasma, making this tool suitable for further studies on the role of fXIa in biological samples.


Factor XIa , Thrombosis , Humans , Fibrinolytic Agents , Hemostasis , Anticoagulants/pharmacology , Factor XI/metabolism
13.
Acta Virol ; 67(1): 42-50, 2023.
Article En | MEDLINE | ID: mdl-36950884

Late expression factor 11 (LEF-11) is an essential protein in the regulation of Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication and late gene expression. Our recent quantitative analysis of protein acetylome revealed for the first time that LEF-11 can be acetylated at one lysine residue (K83) during viral infection, but the underlying mechanism is unclear. The acetylation level for K83 was down-regulated after 36 h post-infection by approximately 30%. To clarify the regulatory function of this modification, overlap PCR was used for site-specific mutagenesis for acetylated (K83Q) or deacetylated (K83R) mimic mutants of LEF-11. The results of viral titration and quantitative polymerase chain reaction showed that after K83 acetylation, budding virion production and the viral genome replication level were significantly upregulated. Meanwhile, the results of yeast two-hybrid (Y2H) system confirmed that K83 deacetylation modification inhibited the interaction between LEF-11 and immediate early gene 1 (IE-1). In conclusion, the acetylation of LEF-11 at K83 might enhance the interaction with IE-1 in the host cell nucleus to promote viral DNA replication, and might be one of the antiviral strategies of the silkworm host. The host inhibits virus proliferation by deacetylating LEF-11. Keywords: BmNPV; LEF-11; acetylation; virus replication; protein interaction.


Bombyx , Nucleopolyhedroviruses , Animals , DNA Replication , Virus Replication/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Factor XI/genetics , Factor XI/metabolism , Acetylation , DNA, Viral , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism
14.
J Thromb Haemost ; 21(1): 83-93, 2023 01.
Article En | MEDLINE | ID: mdl-36695400

BACKGROUND: Polyphosphate (polyP) promotes feedback activation of factor (F) XI by thrombin by serving as a template. The contribution of thrombin's exosites to these interactions is unclear. OBJECTIVES: To determine the contribution of thrombin exosites 1 and 2 to polyP-induced potentiation of FXI activation by thrombin. METHODS: The affinities of α-thrombin; K109E/110E-thrombin, an exosite 1 variant, or R93E-thrombin, an exosite 2 variant; FXI; and FXIa for polyP-70 were quantified using surface plasmon resonance in the absence or presence of exosite ligands. FXI was activated with α-thrombin or thrombin variants in the absence or presence of polyP-70 and exosite ligands. RESULTS: α-Thrombin, K109/110E-thrombin, FXI, and FXIa bound polyP-70, whereas R93E-thrombin exhibited minimal binding. Exosite 1 and exosite 2 ligands attenuated thrombin binding to polyP-70. PolyP-70 accelerated the rate of FXI activation by α-thrombin and K109E/110E-thrombin but not R93E-thrombin up to 1500-fold in a bell-shaped, concentration-responsive manner. Exosite 1 and exosite 2 ligands had no impact on FXI activation by thrombin in the absence of polyP-70; however, in its presence, they attenuated activation by 40% to 65%. CONCLUSION: PolyP-70 binds FXI and thrombin and promotes their interaction. Exosite 2 ligands attenuate activation because thrombin binds polyP-70 via exosite 2. Attenuation of FXI activation by exosite 1 ligands likely reflects allosteric modulation of exosite 2 and/or the active site of thrombin because exosite 1 is not directly involved in FXI activation. Therefore, allosteric modulation of thrombin's exosites may represent a novel strategy for downregulating FXI activation.


Factor XI , Thrombin , Humans , Factor XI/metabolism , Thrombin/metabolism , Polyphosphates/chemistry , Catalytic Domain , Catalysis
15.
J Thromb Haemost ; 21(3): 467-479, 2023 03.
Article En | MEDLINE | ID: mdl-36696199

BACKGROUND: Factor (F) XI deficiency is associated with increased bleeding risk in some individuals. Neither FXI levels nor clinical clotting assays predict the bleeding risk. Compared with controls, FXI-deficient bleeders have reduced clot formation, decreased fibrin network density, and increased susceptibility to fibrinolysis. Tissue factor pathway inhibitor (TFPI) was recently implicated as a modifying factor in individuals with bleeding of unknown cause. OBJECTIVES: To determine the potential of TFPI in modifying the bleeding risk in FXI-deficient individuals. METHODS: The effects of TFPI on thrombin generation and clot formation, structure, and fibrinolysis in FXI-deficient plasma were measured in vitro in the absence or presence of inhibitory anti-TFPI antibody or exogenous recombinant TFPIα. Total plasma TFPI concentration was measured in 2 independent cohorts of controls and FXI-deficient individuals classified as bleeders or nonbleeders (cohort 1: 10 controls and 16 FXI-deficient individuals; cohort 2: 48 controls and 57 FXI-deficient individuals) and correlated with ex vivo plasma clot formation and fibrinolysis parameters associated with bleeding risk. RESULTS: In an in vitro FXI deficiency model, inhibition of TFPI enhanced thrombin generation and clot formation, increased the network density, and decreased fibrinolysis, whereas an increase in TFPI had the opposite effects. Compared with controls, plasma from FXI-deficient bleeders had higher TFPI concentration. Total plasma TFPI concentrations correlated with parameters from ex vivo clotting and fibrinolysis assays that differentiate FXI-deficient bleeders and nonbleeders. CONCLUSION: Coagulation and fibrinolysis parameters that differentiate FXI-deficient nonbleeders and bleeders were altered by plasma TFPIα. Total plasma TFPI was increased in FXI-deficient bleeders. TFPI may modify the bleeding risk in FXI-deficient individuals.


Factor XI Deficiency , Humans , Thrombin/metabolism , Blood Coagulation , Hemorrhage/etiology , Factor XI/metabolism
16.
J Thromb Haemost ; 21(5): 1200-1213, 2023 05.
Article En | MEDLINE | ID: mdl-36696212

BACKGROUND: Titanium (Ti) and its alloys are widely used in manufacturing medical devices because of their strength and resistance to corrosion. Although Ti compounds are considered compatible with blood, they appear to support plasma contact activation and may be thrombogenic. OBJECTIVES: The objective of this study was to compare Ti and titanium nitride (TiN) with known activators of contact activation (kaolin and silica) in plasma-clotting assays and to assess binding and activation of factor XII, (FXII), factor XI (FXI), prekallikrein, and high-molecular-weight kininogen (HK) with Ti/TiN. METHODS: Ti-based nanospheres and foils were compared with kaolin, silica, and aluminum in plasma-clotting assays. Binding and activation of FXII, prekallikrein, HK, and FXI to surfaces was assessed with western blots and chromogenic assays. RESULTS: Using equivalent surface amounts, Ti and TiN were comparable with kaolin and superior to silica, for inducing coagulation and FXII autoactivation. Similar to many inducers of contact activation, Ti and TiN are negatively charged; however, their effects on FXII are not neutralized by the polycation polybrene. Antibodies to FXII, prekallikrein, or FXI or coating Ti with poly-L-arginine blocked Ti-induced coagulation. An antibody to FXII reduced FXII and PK binding to Ti, kallikrein generation, and HK cleavage. CONCLUSION: Titanium compounds induce contact activation with a potency comparable with that of kaolin. Binding of FXII with Ti shares some features with FXII binding to soluble polyanions but may have unique features. Inhibitors targeting FXII or FXI may be useful in mitigating Ti-induced contact activation in patients with titanium-based implants that are exposed to blood.


Kaolin , Prekallikrein , Humans , Factor XI/metabolism , Factor XII/metabolism , Prekallikrein/metabolism , Titanium
17.
Blood Adv ; 7(7): 1156-1167, 2023 04 11.
Article En | MEDLINE | ID: mdl-36409609

A dysregulated plasma contact system is involved in various pathological conditions, such as hereditary angioedema, Alzheimer disease, and sepsis. We previously showed that the 3E8 anti-high molecular weight kininogen (anti-HK) antibody blocks HK cleavage and bradykinin generation in human plasma ex vivo. Here, we show that 3E8 prevented not only HK cleavage but also factor XI (FXI) and prekallikrein (PK) activation by blocking their binding to HK in mouse plasma in vivo. 3E8 also inhibited contact system-induced bradykinin generation in vivo. Interestingly, FXII activation was also inhibited, likely because of the ability of 3E8 to block the positive feedback activation of FXII by kallikrein (PKa). In human plasma, 3E8 also blocked PK and FXI binding to HK and inhibited both thrombotic (FXI activation) and inflammatory pathways (PK activation and HK cleavage) of the plasma contact system activation ex vivo. Moreover, 3E8 blocked PKa binding to HK and dose-dependently inhibited PKa cleavage of HK. Our results reveal a novel strategy to inhibit contact system activation in vivo, which may provide an effective method to treat human diseases involving contact system dysregulation.


Prekallikrein , Thrombosis , Humans , Animals , Mice , Prekallikrein/chemistry , Prekallikrein/metabolism , Factor XI/metabolism , Bradykinin/pharmacology , Bradykinin/chemistry , Kininogen, High-Molecular-Weight/chemistry , Kininogen, High-Molecular-Weight/metabolism
18.
Blood Adv ; 7(9): 1915-1925, 2023 05 09.
Article En | MEDLINE | ID: mdl-36583671

Thrombin generation (TG) assays serve as a valuable tool to study the amplifying roles of intrinsic pathway factors in human coagulation and provide functional insights into the increased bleeding observed in individuals deficient in factors (F) XI, IX, or VIII. Mice are used extensively in hemostasis research owing to the availability of coagulation factor-deficient mice. However, phenotypic differences between mouse and human TG have become apparent. In this study, we describe a novel, calibrated mouse whole blood (WB) TG assay used to assess the amplifying roles of intrinsic pathway factors in mouse coagulation. WB- and plasma-TG was triggered with either silica or tissue factor (TF) in samples from wild-type mice and mice deficient for FXII, FXI, or FIX. Expectedly, silica-triggered WB-TG and platelet-poor plasma (PPP)-TG were significantly reduced by deficiencies for FXII, FXI, or FIX. FXII deficiency had no effect on WB-TG or PPP-TG when triggered with TF. However, FXI deficiency resulted in significantly reduced WB-TG triggered by low concentrations of TF but had no effect on TF-triggered PPP-TG. FIX deficiency profoundly reduced WB-TG when triggered by low or high concentrations of TF whereas TG in PPP or platelet-rich plasma was only moderately reduced under these conditions. In conclusion, we have developed a novel mouse WB-TG assay with enhanced sensitivity to FXI- and FIX-dependent amplification of coagulation compared with an established plasma-TG assay. The enhanced sensitivity of WB-TG to FXI and FIX-dependent amplification of coagulation suggests an important role of blood cells in this process.


Blood Coagulation , Thrombin , Animals , Humans , Mice , Hemorrhage , Hemostasis , Thrombin/metabolism , Thromboplastin/metabolism , Factor XI/metabolism , Factor IX/metabolism
19.
Blood Adv ; 7(8): 1404-1417, 2023 04 25.
Article En | MEDLINE | ID: mdl-36240297

Previous studies suggested that contact pathway factors drive thrombosis in mechanical circulation. We used a rabbit model of veno-arterial extracorporeal circulation (VA-ECMO) to evaluate the role of factors XI and XII in ECMO-associated thrombosis and organ damage. Factors XI and XII (FXI, FXII) were depleted using established antisense oligonucleotides before placement on a blood-primed VA-ECMO circuit. Decreasing FXII or FXI to < 5% of baseline activity significantly prolonged ECMO circuit lifespan, limited the development of coagulopathy, and prevented fibrinogen consumption. Histological analysis suggested that FXII depletion mitigated interstitial pulmonary edema and hemorrhage whereas heparin and FXI depletion did not. Neither FXI nor FXII depletion was associated with significant hemorrhage in other organs. In vitro analysis showed that membrane oxygenator fibers (MOFs) alone are capable of driving significant thrombin generation in a FXII- and FXI-dependent manner. MOFs also augment thrombin generation triggered by low (1 pM) or high (5 pM) tissue factor concentrations. However, only FXI elimination completely prevented the increase in thrombin generation driven by MOFs, suggesting MOFs augment thrombin-mediated FXI activation. Together, these results suggest that therapies targeting FXII or FXI limit thromboembolic complications associated with ECMO. Further studies are needed to determine the contexts wherein targeting FXI and FXII, either alone or in combination, would be most beneficial in ECMO. Moreover, studies are also needed to determine the potential mechanisms coupling FXII to end-organ damage in ECMO.


Extracorporeal Membrane Oxygenation , Thrombosis , Animals , Rabbits , Factor XII , Extracorporeal Membrane Oxygenation/adverse effects , Thrombin/metabolism , Factor XI/metabolism , Thrombosis/etiology
20.
Hematology Am Soc Hematol Educ Program ; 2022(1): 495-505, 2022 12 09.
Article En | MEDLINE | ID: mdl-36485148

Anticoagulants have been in use for nearly a century for the treatment and prevention of venous and arterial thromboembolic disorders. The most dreaded complication of anticoagulant treatment is the occurrence of bleeding, which may be serious and even life-threatening. All available anticoagulants, which target either multiple coagulation factors or individual components of the tissue factor (TF) factor VIIa or the common pathways, have the potential to affect hemostasis and thus to increase bleeding risk in treated patients. While direct oral anticoagulants introduced an improvement in care for eligible patients in terms of safety, efficacy, and convenience of treatment, there remain unmet clinical needs for patients requiring anticoagulant drugs. Anticoagulant therapy is sometimes avoided for fear of hemorrhagic complications, and other patients are undertreated due to comorbidities and the perception of increased bleeding risk. Evidence suggests that the contact pathway of coagulation has a limited role in initiating physiologic in vivo coagulation and that it contributes to thrombosis more than it does to hemostasis. Because inhibition of the contact pathway is less likely to promote bleeding, it is an attractive target for the development of anticoagulants with improved safety. Preclinical and early clinical data indicate that novel agents that selectively target factor XI or factor XII can reduce venous and arterial thrombosis without an increase in bleeding complications.


Pharmacy , Thromboembolism , Thrombosis , Humans , Factor XI/metabolism , Factor XI/therapeutic use , Thromboembolism/drug therapy , Thromboembolism/prevention & control , Blood Coagulation/physiology , Factor XII/metabolism , Factor XII/pharmacology , Factor XII/therapeutic use , Anticoagulants/adverse effects , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Hemorrhage/prevention & control
...